6 research outputs found

    Energy Efficient Communications in RIS-assisted UAV Networks Based on Genetic Algorithm

    Full text link
    This paper proposes a solution for energy-efficient communication in reconfigurable intelligent surface (RIS)-assisted unmanned aerial vehicle (UAV) networks. The limited battery life of UAVs is a major concern for their sustainable operation, and RIS has emerged as a promising solution to reducing the energy consumption of communication systems. The paper formulates the problem of maximizing the energy efficiency of the network as a mixed integer non-linear program, in which UAV placement, UAV beamforming, On-Off strategy of RIS elements, and phase shift of RIS elements are optimized. The proposed solution utilizes the block coordinate descent approach and a combination of continuous and binary genetic algorithms. Moreover, for optimizing the UAV placement, Adam optimizer is used. The simulation results show that the proposed solution outperforms the existing literature. Specifically, we compared the proposed method with the successive convex approximation (SCA) approach for optimizing the phase shift of RIS elements

    Effectiveness of Reconfigurable Intelligent Surfaces to Enhance Connectivity in UAV Networks

    Full text link
    Reconfigurable intelligent surfaces (RISs) are expected to make future 6G networks more connected and resilient against node failures, due to their ability to introduce controllable phase-shifts onto impinging electromagnetic waves and impose link redundancy. Meanwhile, unmanned aerial vehicles (UAVs) are prone to failure due to limited energy, random failures, or targeted failures, which causes network disintegration that results in information delivery loss. In this paper, we show that the integration between UAVs and RISs for improving network connectivity is crucial. We utilize RISs to provide path diversity and alternative connectivity options for information flow from user equipments (UEs) to less critical UAVs by adding more links to the network, thereby making the network more resilient and connected. To that end, we first define the criticality of UAV nodes, which reflects the importance of some nodes over other nodes. We then employ the algebraic connectivity metric, which is adjusted by the reflected links of the RISs and their criticality weights, to formulate the problem of maximizing the network connectivity. Such problem is a computationally expensive combinatorial optimization. To tackle this problem, we propose a relaxation method such that the discrete scheduling constraint of the problem is relaxed and becomes continuous. Leveraging this, we propose two efficient solutions, namely semi-definite programming (SDP) optimization and perturbation heuristic, which both solve the problem in polynomial time. For the perturbation heuristic, we derive the lower and upper bounds of the algebraic connectivity obtained by adding new links to the network. Finally, we corroborate the effectiveness of the proposed solutions through extensive simulation experiments.Comment: 14 pages, 8 figures, journal paper. arXiv admin note: text overlap with arXiv:2308.0467

    Green synthesis of silver nanoparticles from aqueous extract of Ziziphora clinopodioides Lam and evaluation of their bio-activities under in vitro and in vivo conditions

    No full text
    © 2020 John Wiley & Sons, Ltd. The purpose of this experiment was the green synthesis of silver nanoparticles from aqueous extracts of Ziziphora clinopodioides Lam (AgNPs@Ziziphora) and assessment of their cytotoxicity, antioxidant, antibacterial, antifungal, and cutaneous wound-healing effects. These nanoparticles were characterized using ultraviolet–visible spectroscopy (UV–Vis), X-ray diffraction (XRD), field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy (FESEM-EDX), atomic force microscopy (AFM), and transmission electron microscopy (TEM). UV–Vis, TEM, and FESEM analyses indicated that the size of Ag nanoparticles (AgNPs) depended on Z. clinopodioides and AgNO3 concentrations. In vitro biological experiments indicated that AgNPs@Ziziphora has excellent antioxidant potential against DPPH, antifungal effects against Candida guilliermondii, Candida krusei, Candida glabrata, and Candida albicans, and antibacterial activities against Staphylococcus aureus, Bacillus subtilis, Streptococcus pneumonia, Salmonella typhimurium, Pseudomonas aeruginosa, and Escherichia coli O157:H7. Also, these nanoparticles did not exhibit cytotoxicity property against human umbilical vein endothelial cells (HUVECs). An in vivo biological test revealed that AgNPs@Ziziphora ointment significantly (p ≤ 0.01) increased the levels of wound contracture, blood vessels, hydroxyl proline, hexuronic acid, hexosamine, fibrocytes, fibroblasts, and fibrocyte/fibroblast ratio and significantly (p ≤ 0.01) decreased the wound area, and levels of total cells, neutrophils, and lymphocytes than other groups in rats. The results of UV–Vis, XRD, FESEM-EDX, AFM, and TEM confirmed that the aqueous extract of Z. clinopodioides can be used to produce silver nanoparticles with significant antioxidant, antimicrobial, and cutaneous wound-healing properties without any cytotoxicity
    corecore